

Effect of Nanoclay Content and Matrix Composition on Properties and Stress-Strain Behavior of NR/EPDM Nanocomposites

Abdolmajid Alipour,*1 Ghasem Naderi,2 Mir HamidReza Ghoreishy2

¹Young Researchers Club, Zarghan Branch, Islamic Azad University, Zarghan, Iran

Correspondence to: A. Alipour (E-mail: Abdolmajid.Alipoor@gmail.com)

Published online 8 September 2014

DOI: 10.1002/app.41332

[Article in J. Appl. Polym. Sci. 2013, 131, 1275 DOI: 10.1002/37752]

In the published article cited above, the following errors were discovered.

Page 1278 (top):

Figure 1. (a) XRD results of NR75/EPDM25 nanocomposites containing 1, 3, 5, and 7 wt % nanoclay. (b) XRD results of different compositions of NR/EPDM containing 3 wt % nanoclay.

The caption was incorrect and should have read:

Figure 1. (a) XRD results of NR75/EPDM25 nanocomposites containing 1, 3, 5, and 7 wt % nanoclay. (b) XRD results of different compositions of NR/EPDM containing 3 wt % nanoclay.

Page 1279 (bottom), Table V:

Table V. Mechanical Properties of Prepared Samples Before and After Thermal Aging

Sample code (Dimensions)	Tensile strength (MPa)	Compression strength (MPa)	Tear strength (MPa)	Modulus 100% (MPa)
Before aging				
S ₀	1.403	0.72	18.1	0.90
S ₁	5.3	0.9	19.64	1.07
S ₂	8.247	0.93	21.1	1.09
S ₃	10.12	0.957	22.8	1.14
S ₄	10.795	0.998	24.75	1.26
S ₅	18.5	1.02	28.59	1.09
S ₆	4.4	1.068	19.3	1.10
S ₇	3.89	1.075	18.8	1.17
S ₈	1.59	1.078	16.2	1.20
After aging				
So	0.98	0.50	12.67	0.63
S ₁	3.975	0.68	14.74	0.80
S ₂	6.43	0.72	18.568	0.85
S ₃	8.19	0.765	18.24	0.91
S ₄	9.17	0.867	21.03	1.07
S ₅	12.395	0.67	18.68	0.7
S ₆	3.82	0.91	16.598	0.95
S ₇	3.42	0.96	16.92	1.05
S ₈	1.43	1.01	14.74	1.1

The table was incorrect and should have read:

© 2014 Wiley Periodicals, Inc.

²Department of Rubber, Iran Polymer and Petrochemical Institute, Tehran, Iran

Table V. Mechanical Properties of Prepared Samples Before and After Thermal Aging

Sample code (Dimensions)	Tensile strength (MPa)	Compression strength (MPa)	Tear strength (MPa)	Modulus 100% (MPa)			
Before aging							
So	1.403	0.72	18.1	0.90			
S ₁	5.3ª	0.9	19.64	1.07 ^a			
S ₂	8.247 ^a	0.93	21.1	1.09 ^a			
S ₃	10.12 ^a	0.957	22.8	1.14 ^a			
S ₄	10.795 ^a	0.998	24.75	1.26ª			
S ₅	18.5	1.02	28.59	1.09			
S ₆	4.4	1.068	19.3	1.10			
S ₇	3.89	1.075	18.8	1.17			
S ₈	1.59	1.078	16.2	1.20			
After aging							
So	0.98	0.50	12.67	0.63			
S ₁	3.975	0.68	14.74	0.80			
S ₂	6.43	0.72	18.568	0.85			
S ₃	8.19	0.765	18.24	0.91			
S ₄	9.17	0.867	21.03	1.07			
S ₅	12.395	0.67	18.68	0.7			
S ₆	3.82	0.91	16.598	0.95			
S ₇	3.42	0.96	16.92	1.05			
S ₈	1.43	1.01	14.74	1.1			

^a Data taken from reference 4.

We apologize for any inconvenience this may have caused.

WWW.MATERIALSVIEWS.COM

